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Introduction  
The U.S. Coast Guard is preparing an EIS to support rule making for management of dry 
cargo residue (DCR). Concern over DCR discharged to the lakes as potential substrate for 
the colonization of the invasive species Dreissena polymorpha (zebra mussel) and Dreissena 
bugensis (quagga mussel) within the Great Lakes has prompted an investigation into their 
attachment onto these residues. Invasion of the Great Lakes by dreissenids has caused both 
environmental and economic concerns. Providing additional habitat for their proliferation 
may increase their expansion into other areas of the lakes. This technical memorandum 
consists of a literature review and provides input in the EIS analysis of invasive mussel 
impacts in the lakes. The goals of the literature review are the following:  

• Discuss life processes of Dreissena spp 
• Document limiting factors of Dreissena spp, particularly substrate preferences 
• Consider ecological and economic impacts of Dreissena spp colonization 
• Find and interpret relatively recent Dreissena polymorpha (zebra mussel) and Dreissena 

bugensis (quagga mussel) distributions in the open waters of the Great Lakes in relation 
to navigational track lines of cargo ships 

Origin 
Zebra mussels are considered native to the Black Sea, Caspian Sea, and Ural River areas of 
Eurasia. Quagga mussels are indigenous to the Dneiper River drainage of Ukraine and were 
reported in Ukraine’s Bug River in 1890 (Andrusov, 1890). Canals built in Europe have 
allowed both of these species to expand their ranges, and they now have expanded into 
most major drainages in Europe. Zebra and quagga mussels in the Great Lakes have been 
introduced by numerous sources in northwestern and north central Europe, from which 
shipping to the Great Lakes originates (Jentes, 2001). Zebra mussels were first discovered in 
Lake St. Clair in 1988 and quagga mussels where first noted in Lake Erie in 1989. Quagga 
mussels where not identified as a distinct species until 1991.  
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Reproduction and Development 

Both zebra and quagga mussels are prolific breeders; this possibly contributes to their 
spread and abundance. Dreissena spp are dioecious (either male or female) with external 
fertilization. A fully mature female mussel is capable of producing up to one million eggs 
per season. Reproduction of zebra mussels usually occurs in the spring or summer, 
depending on water temperature. Optimal temperature for spawning is 14°C to 16°C 
(USGS, 2005); in waters that are warm throughout the year, spawning may occur over 
longer periods. Spawning for quagga mussels in profundal areas is reported to occur at 9°C 
(Claxton and Mackie, 1998). This lower spawning temperature may give the quagga mussel 
an advantage over the zebra mussel and may contribute to its invasions in the northern 
Great Lakes.  

Dreissenid early life history evolves through the veliger, post-veliger, and adult stages. The 
veligers are photopositive, active swimmers using a ciliated velum (derived from the 
prototroch of the trocophore larva). After 10–15 days, the veligers metamorphose to the first 
post-veliger stage, the pediveliger. The pediveliger becomes photonegative and settles to the 
benthos in search for a suitable substrate for attachment. The pediveliger has a velum and a 
ciliated foot and uses both in substrate exploration. It is the pediveliger that is the primary 
life stage involved in substrate selection. Once the development proceeds to the next post-
veliger stage, the plantigrade, it loses its velum and can no longer swim. Once in contact 
with the substrate, the post-veliger attaches and completes shell development and 
maturation to an adult.  

Dispersion Processes 

Zebra and quagga mussels are dispersed by a variety of mechanisms. Generally, in the 
presettling stage, mussel veligers are moved by prevailing water currents. As post-veligers 
become photonegative, settling down the water column, they drift with currents until they 
encounter a suitable attachment surface.  

Mussels attach to surfaces by secreting a tuft of fibers known as byssal threads (collectively 
forming a bysuss) from a gland near the foot of their shells. The threads have an adhesive 
disk at the end that attaches to surfaces by secreting a protein adhesive. To detach, the 
mussels secrete enzymes that break the byssal threads near the foot. Byssal threads are 
regenerated after detachment (Claudi and Mackie, 1994). 

Adult mussels can relocate either by crawling, which can occur at rates up to several meters 
per day, or by moving with currents after detachment (Maryland Sea Grant, 1994). Adults 
will reposition themselves to a more advantageous location to obtain food. Translocation of 
adult mussels is most common in fall and winter months (Claudi and Mackie, 1994). To a 
lesser extent, waterfowl and other aquatic organisms also assist in the dispersal of these 
mussels.  

Feeding 
Both mussels are filter feeders; they use their cilia to pull water into their shell cavity where 
it passes through an incurrent siphon and desirable particulate matter is removed. Each 
adult mussel is capable of filtering one or more liters of water each day and removing 
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phytoplankton, zooplankton, and even their own veligers (Snyder et al., 1997; USGS, 2007a). 
Any undesirable particulate matter is bound with mucus, known as pseudofeces, and 
ejected out the incurrent siphon. The particle-free water is then discharged out the excurrent 
siphon. 

Natural Predators 
European populations of diving ducks have changed their migration patterns in order to 
forage on beds of zebra mussels (Molloy et al., 1997). This most extreme case occurred on 
Germany’s Rhine River. Overwintering diving ducks and coots consumed up to 97 percent 
of the standing crop of mussels each year. However, high mussel reproduction rates 
replenished the population each summer. Molloy et al. (1997) cited 176 species involved in 
predation, 34 in parasitism, and 10 in competiton with mussels. 

In North America, the species most likely to prey on relatively deep beds of zebra and 
quagga mussels are scaup, canvasbacks, and old squaws. But populations of these species 
are quite low; in the Great Lakes, diving ducks are migrating visitors, pausing only to feed 
during migrations. However, Canadian researchers have documented increasing numbers 
of migrating ducks feeding on zebra mussels around Point Pelee in western Lake Erie. In 
southern Lake Michigan, zebra mussels encrusting an underwater power plant intake 
attracted flocks of lesser scaup. Unfortunately, some were pulled into the intake pipe and 
drowned. The stomachs of these dead scaup were full of zebra mussels. Mallard ducks also 
are frequently observed foraging on zebra mussels on shoreline rocks and shallow 
structures. Additionally, round goby (Neogobius melanostomus) and freshwater drum 
(Aplodinotus grunniens) are known to feed substantially on Dreissena spp (French and Love, 
1995; Walsh et al., 2007). While drums may reduce population, they are not an effective 
biological controller because of feeding limitations based on mussel shell size (French and 
Love, 1995). Yellow perch (Perca flavescens) have been observed feeding on juveniles, 
particularly when they are detached and drifting. 

Limiting Factors 
Although zebra and quagga mussels are similar species, limiting factors vary slightly, as 
shown in Table 1. 

Food Supply 

Food availability is one of the most essential factors for Dreissena spp growth (Chase and 
Bailey, 1999). Insufficient food can compromise the structure of Dreissena spp byssal threads 
and lead to weak attachment (Clarke, 1999). Total suspended solids and phytoplankton 
represent the Dreissena spp food sources (USGS, 2007a). In Lake Huron, zebra mussel growth 
was affected nine times more by phytoplankton biomass (measured by chlorophyll-a) than 
by temperature (Chakraborti et al., 2002). As expected, higher nutritional quality of food 
aides reproduction success by increasing mussel egg mass (Wacker and Elert, 2003).  
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TABLE 1 
Environmental Requirements for Great Lakes Invasive Mussels 

Parameter Zebra Quagga  Reference 

Preferred 
temperature (°C) 

10–25 As low as 5 Karatayev et al. (1998), Paukstis et al. 
(1997), Roe and MacIsaac (1997), Claudi 
and Mackie (1994) 

Preferred calcium 
level (mg/L) 

44–50 Perhaps higher than 
for zebra mussels 

Sprung (1987), Jones and Ricciardi (2005) 

Preferred pH 7.4–9.3 Presumed similar to 
zebra mussels 

Sprung (1987), Bowman and Baily (1998) 

Preferred DO 
(% saturation) 

At least 25 Perhaps lower than for 
zebra mussels 

Karatayev et al. (1998) 

Preferred depth (ft) 15–25 Up to at least 300 Mills et al. (1993, 1999), Egan (2006)  

Reported extreme 
depths (ft) 

360, Lake 
Ontario 

540, Lake Michigan Mills et al. (1993), Egan (2006)  

Note: DO, dissolved oxygen. 
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Temperature is another major factor in zebra mussel survival and reproduction (Chase and 
Bailey, 1999; Wacker and Elert, 2003). Zebra mussel survival temperatures range from 0°C to 
slightly in excess of 30°C for short periods; optimum temperatures are generally less than 
25°C (Paukstis et al., 1997). The minimal temperature for growth and development is 
approximately 10°C (Karatayev et al., 1998). Increased temperatures usually increase 
feeding rates. Zebra mussel spawning (release of gametes into the water column) will 
generally not occur at temperatures below about 12°C (Claudi and Mackie, 1994). 

Quagga mussels have been found in temperatures less than 5°C in Lake Ontario and there is 
evidence that quagga mussels are capable of spawning at temperatures near 5°C (Mills et 
al., 1993; Roe and MacIsaac, 1997). This may give them an advantage over the zebra mussel 
and account for their proliferating in the hypolimnion of the some Great Lakes. Claxton and 
Mackie (1998) found that quagga mussels spawned between 9°C and 10°C whereas zebra 
mussels neither spawned nor showed significant gametogenic development at these 
temperatures. MacIsaac (1994) reported that high water temperature in the Great Lakes 
would not likely affect quagga mussel distribution. 

Calcium Level 

The significance of calcium as a limiting factor for zebra mussels depends on the life stage of 
the mussel. Although adult zebra mussels can tolerate low-calcium waters, veligers are most 
successfully reared within a calcium level ranging from 44 to 50 mg/L, with minimum 
range of 12–24 mg/L (Sprung, 1987; Ram and Walker, 1993). Because veligers are highly 
sensitive to calcium, calcium is a critical characteristic for zebra mussel population 
establishment. Zebra mussels do not survive when there is prolonged low-calcium 
concentration in the water because calcium is an essential element in the composition of the 
bivalve shell. Calcium concentrations of 15 mg/L or less were found to limit the distribution 
of zebra mussels in the St. Lawrence River (Mellina and Rasmussen, 1994). Laboratory-
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based studies conducted by Hincks and Mackie (1997) reported maximum growth at 32 
mg/L and negative shell growth at 8.5 mg/L. Jones and Ricciardi (2005) indicated that zebra 
mussel populations occurred at calcium levels as low as 8 mg/L.  

Quagga mussels were found to be absent below calcium concentrations of 12 mg/L, which 
suggests that they may have a higher calcium requirement then the zebra mussel (Jones and 
Ricciardi, 2005).  

pH 
The amount of hydrogen ions in the water—that is, pH—is critical in determining whether 
zebra mussels will be able to survive and reproduce in a water body. A pH of 7.4 or less 
inhibits larval development (Sprung, 1987). Laboratory-based studies conducted by 
Bowman and Baily (1998) indicated an upper tolerance limit of between 9.3 and 9.6. Hincks 
and Mackie (1997) reported that positive growth in juvenile zebra mussels occurred only at 
a pH greater than 8.3. Despite the general threshold, in laboratory studies Mikheev (1964) 
found that water with a pH of 6.6 and a calcium level less than 12 mg/L could host a mussel 
population greater than 500,000/m2. This has not been documented in the field. 

Information on the effects of pH on the quagga mussel is lacking, but the effects would 
likely be similar to those on the zebra mussel. 

Dissolved Oxygen Level 

In 1992, Lake Erie’s area with periodic summer anoxia was the only region of the basin that 
was not colonized with Dreissena spp (Dermott and Munawar, 1993). This observation 
strongly suggests that dissolved oxygen is a limiting factor to population density and 
occurrence. Successful growth and reproduction of zebra mussels requires at least 25 
percent oxygen saturation (Karatayev et al., 1998). Due to their preferred shallow water 
habitat, this usually is not a problem. Although zebra mussels can survive at very low 
concentrations for short periods of time, growth and reproduction will be limited 
(Woynarovich, 1961). 

As with pH, there is little information on dissolved oxygen requirements for the quagga 
mussel. Based on its ability to colonize deeper areas of the Great Lakes, its dissolved oxygen 
needs may be less than those of the zebra mussel.  

Substrate Availability 

One of the most critical factors that affect the distribution and abundance of zebra mussels is 
substrate suitable for attachment. Juvenile and adult zebra mussels are epifaunal and 
generally sessile and are most abundant on rocky surfaces (Mellina and Rasmussen, 1994; 
Karatayev et al., 1998). The attachment of zebra and quagga mussels to hard substrates is a 
process that occurs when dressenid post-veliger larvae search for their initial attachment 
location and with mobile adults. Under normal conditions over 99 percent of veligers do not 
reach a successful attachment stage. High mortality is expected for post-veligers unable to 
locate and settle upon suitable substrate (Stańczykowska, 1977). Post-veligers prefer 
substrate consisting of macrophytes, mussel aggregates, and pebbles (Lewandowski, 1982). 
Zebra mussels will colonize on any hard surface and can reach densities of up to 30,000 to 
70,000 mussels per square meter (2,800 to 6,500 mussels per square foot) under certain 
conditions. Zebra mussels will also colonize soft, silty lake bottoms where harder objects are 
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deposited to serve as substrate (Ohio Sea Grant Program, 1995). However, preference for 
naturally occurring hard substrates may diminish over time as mussels become established 
in an area and juveniles colonize old shell. This can result in expansion onto adjacent soft 
substrates such as sand, mud, and gravel (Hunter and Bailey, 1992; Berkman et al., 2000; 
Czarnoeski et al., 2004).  

In contrast, adult quagga mussels appear to be able to colonize both hard and soft 
substrates. They have formed extensive colonies on soft sediment in Lake Erie (Dermott and 
Munawar, 1993; Dermott and Kerec, 1997; Roe and MacIsaac, 1997). Quagga and zebra 
mussels have been found in western Lake Erie on soft substrates, displaying adaptation 
within 4 years of being introduced into the basin (Ohio Sea Grant Program, 1995; Berkman 
et al., 2000). In Lake Michigan they can colonize sand, clay, and pebbles, but not soft mud 
(Egan, 2006). As noted above, once a mussel is established on a hard or soft substrate, its 
shell can provide complex, hard substrate and promote colonization. Zebra mussels also 
will attach to one another, growing to thicknesses of up to 150 mm (6 in) (O’Neill, 1996).  

The U.S. Environmental Protection Agency’s (EPA) Great Lakes National Program Office 
reported the substrate composition of the Great Lakes for 1998 (EPA, 1998). (See Figure 1.) 
Silt and clay dominate the lakes, and Lake Michigan and Huron have the most sand. All 
substrate types in the Great Lakes could be colonized by quagga mussels because whereas 
substrate has been shown to affect population density and distribution, it has not been 
shown to restrict mussels from being present in systems due to their ability to colonize sand, 
mud, and hard substrate (Allen and Ramcharan, 2001).  

FIGURE 1 
Sediment Composition in the Great Lakes, Summer 1998 

 
Source: EPA (1998). 
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Zebra mussels generally reach their highest densities in shallow water. Lake Ontario zebra 
mussel populations were most abundant at depths of 15 to 25 m (50 to 82 ft) (Mills et al., 
1993). In Lake Erie, zebra mussels have expanded habitat into deeper, muddy substrate 
areas of the basin with an average depth of 10 m (33 ft) (Coakley et al., 1997). In Lake 
Ontario they have been reported at depths of 110 m (360 ft) (Mills et al., 1993). 

In Lake Erie, zebra and quagga mussels coexist at depths of 8 to 110 m (26 to 360 ft). 
However, only quagga mussels are present at depths greater than 110 m (360 ft), as great as 
130 m (425 ft) in Lake Ontario (Mills et al., 1993, 1999). Quagga mussels can thrive in both 
warm and near-freezing conditions of Lake Michigan, flourishing at depths of 300 ft and 
have been found as deep as 540 ft (Egan, 2006). 

Colonization Effects 
While low-density zebra and quagga mussel colonies may cause negligible impact, high-
density colonies have led to major ecological and economic problems since their arrival in 
North America. Both species are prodigious water filterers, removing substantial amounts 
of phytoplankton and suspended particulates from the water. By removing the 
phytoplankton, dreissenid in turn decrease the food source for zooplankton, therefore 
altering the food web (USGS, 2007a, b). USGS (2007a) summarized studies showing the 
decreases of plankton due to large dreissenid colonies reducing zooplankton biomass 
through reducing phytoplankton. (See Table 2.) Zebra mussels filter small particles 90 
percent more efficiently than native unionid bivalve mollusks, and dreissenid infestations 
have decreased unionid populations (Nalepa, 1994; USGS, 2007a). A study by the National 
Oceanic and Atmospheric Administration’s (NOAA) Great Lakes Environmental Research 
Laboratory found that zebra mussels also promote and maintain Microcystis blooms, a 
potentially toxic blue-green alga, by filtering Microcystis out of water but eating other algae, 
Microcystis’s competitors (Vanderploeg et al., 2001). 

TABLE 2 
Summary of Studies Reporting Phytoplankton Decline due to Large-Scale Dreissena spp Invasions*  

Location Effects after Dreissena spp invasions Reference 

Lake Erie Diatom declined 82–92% 

Total algae declined 62–90% from 1988 to 1990 

Zooplankton declined 55–71% 

Holland (1993) 

Nichols and Hopkins (1993) 

MacIsaac et al. (1995) 

Saginaw Bay, Lake 
Huron 

Chlorophyll-a declined 60–70%; zooplankton 
decreased 40% from 1991 to 1992 

Fahnenstiel et al. (1993) 

Hudson River Phytoplankton biomass declined 85%; zooplankton 
declined 70% 

Caraco et al. (1997) 

* From USGS (2007a) data. 
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Dr. Thomas Nalepa with NOAA reported that Lake Huron alewives, smelt, and bloater 
populations, which feed on zooplankton, have suffered greatly owing to the invasion of 
quagga, which severely decrease food availability for the larger fish that prey on these 
smaller fish. Nalepa also stated that Michigan’s coho and chinook salmon stocking rates 
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were reduced by 50 percent in response to mussels’ negative impact on food availability 
(AP, 2007). 

In addition to decreasing chlorophyll-a, the filtration of water is associated with increases in 
water transparency and accumulation of pseudofeces (Claxton and Mackie, 1998). Increased 
water clarity enhances light penetration, causing a proliferation of aquatic plants that can 
change species dominance. This alters entire ecosystems and creates viable substrate from 
plants for veligers to expand colonies. Increased water clarity can also alter thermoclines by 
increasing water temperature. The accumulating pseudofeces produced by high-density 
dreissenid colonies create a polluted environment (USGS, 2007a). The process of waste 
decomposing depletes oxygen, creates acidic conditions, and produces toxic byproducts 
(USGS, 2007b). In addition, quagga and zebra mussels accumulate organic pollutants within 
their tissues to levels more than 300,000 times greater than concentrations in the 
environment, and these pollutants are found in their pseudofeces. These bioaccumulated 
toxins can be passed up the food chain, thereby increasing wildlife exposure to organic 
pollutants (Snyder et al., 1997; USGS, 2007a).  

Another major threat from high Dreissena spp density involves the fouling of native 
freshwater mussels. In addition to competing for food, zebra mussels are known to heavily 
colonize any hard substrata, including native mussels and other invertebrates. This can 
cause stress and even mortality due to feeding interference, and this fouling has severely 
reduced populations of native mussels.  

High Dreissena spp density can also change habitat for other species. The Dreissena spp beds 
negatively affect blue gill, a major Great Lakes fisheries species, by decreasing their 
predation rates on amphipods by providing amphipods spatial refugia (González and 
Downing, 1999). Similar decreased foraging efficiency was reported with native mottled 
sculpin (Cottus bairdi) (McCabe and Marsden, 2001).  

The ability to rapidly colonize hard surfaces causes serious economic problems. These major 
biofouling organisms can clog water intake structures, such as pipes and screens, therefore 
reducing pumping capabilities for power and water treatment plants, costing industries, 
companies, and communities. Recreation-based industries and activities have also been 
affected; docks, breakwalls, buoys, boats, and beaches have all been heavily colonized 
(USGS, 2007a).  

Potential Dreissena spp colonization impacts are not completely clear owing to the relatively 
short time span of their presence in North America. However, it is certain from studies thus 
far that Dreissena spp have a high potential for rapid adaptation leading to significant long-
term impacts in North American waters (Mills et al., 1996). 

Population Distribution 
A population shift has occurred within the Dreissena spp since the early 1990s. The large 
shell size and low respiration rates of quagga mussels are competitive advantages against 
the zebra mussel and may explain their increasing dominance between the two species 
(Stoeckmann, 2003). In 1992, quagga mussels greatly outnumbered zebra mussels only in 
the eastern basin of Lake Erie, but now the entire lake is dominated with quagga mussels 
(Mills et al., 1993; Patterson et al., 2002). Additionally, Patterson et al. (2002) reported that 
the Dreissena spp basin-average, shell-free dry tissue mass in Lake Erie increased nearly 
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fourfold from 1992 to 2002. Quagga mussels dominate the Dreissena spp in nearshore regions 
of Lake Ontario as well (Wilson et al., 2006).  
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Currently, Lake Superior does not have a large Dreissena spp invasion. No quagga mussels 
were observed in Lake Superior in a 2002 survey; however, they were observed in 2005 and 
in 2007 as expected owing to their ability to spawn at temperatures lower than zebra 
mussels can and survive with a lower food supply (Grigorovich et al., 2003; EPA, 2007; 
USGS, 2007a). The current area of reproduction is in the Duluth-Superior harbor (EPA, 2007; 
Minnesota Sea Grant, 2007). Doug Jenson (personal communication, 2007) with the 
Minnesota Sea Grant attributes the isolated harbor colonization to the harbor’s being less 
influenced by Lake Superior and by having shallower, warmer waters with higher calcium 
levels. Jenson also commented that despite the large magnitude of larva floating from the 
Duluth-Superior harbor into the western basin, no massive colonies exist in the larger lake. 
Due to Lake Superior’s low calcium levels, Doug Jenson (personal communication, 2007) 
and Thomas Nalepa (AP, 2007) do not believe quagga mussel colonization will be as large 
scale as in the other Great Lakes.  

CH2M HILL investigated the existence of up-to-date, open-water population density maps 
for all the Great Lakes through literature searches and personal correspondence with 
federal, state, and university authorities (Benson, 2007; Bunnell, 2007; Kreiger, 2007; Mayer, 
2007; Mackey, 2007; Ciborowski, 2007). All resources concluded that due to the expansive 
scope of such a study and insufficient funding, no recent open water Dreissena spp 
distribution maps exist for the entire Great Lakes. The U.S. Geological Survey (USGS) has 
produced a nearshore map (see Figure 2) displaying the presence of quagga and zebra 
mussels in the Great Lakes for 2007 but not showing open water information or density 
values (USGS, 2007c). Benthic surveys performed annually by EPA can provide only mussel 
presence or absence data due to the provisional characteristics of the Dreissena spp portion of 
the study (EPA, 2007). (See Figure 3.)  
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FIGURE 2 
Map of Dreissena spp Nearshore Distribution for 2007 

Source: USGS (2007). 

However, maps showing open-water distribution patterns in Lake Erie and south Lake 
Michigan were created for this report. To further investigate the distribution patterns of 
Lake Erie and south Lake Michigan, basin bathymetry and cargo ship sweep lines were 
included in the figures. The zebra and quagga survey maps highlight the 10-m and 100-m 
contours according to their respective depth preference, as previously discussed (Mills et al., 
1993, 1999; Egan, 2006). The cargo ship sweep lines were produced from data from USCG 
(2005).  
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Lake Erie quagga and zebra mussel distribution maps (see Figures 4 and 5) were created 
using data from an environmental monitoring and assessment program (Ciborowski et al., 
2007). Depth is not a limiting factor for the quagga mussels in Lake Erie because the 
maximum depth is 210 feet, within the quagga mussel preference. These figures display the 
dominance of quagga mussels over zebra mussels in Lake Erie and reflect the limiting 
effects of anoxia on dreissenid colonization reported by Dermott and Munawar (1993). Lake 
Erie’s central basin area with periodic summer anoxia was the only region that was not 
colonized with Dreissena spp. Potential areas of concern may be areas to the east and west of 
this absence region, where sweeping and Dreissena spp presence was reported. However, 
because Dreissena spp are present throughout the lake, dry cargo residue discharged here 
may not promote increased Dreissena spp colonization any more than the existing colonies 
themselves promote colonization by creating their own substrate. 

The southern Lake Michigan Dreissena spp distribution maps (see Figures 6 and 7) were 
created using data from NOAA (Nalepa, unpublished data, 2004. As in Lake Erie, quagga 
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dominance is reflected here as well. A potential area of concern in southern Lake Michigan 
is the open water east of Chicago, where sweeping was reported. Depth is not a limiting 
factor in this area owing to its being less than 100 m (300 ft), and quagga mussel presence 
was confirmed at the sites. Any additional hard substrate here may promote increased 
Dreissena spp colonization. Near shore localized anoxia is possible in Lake Michigan and 
may account for the absence of Dreissena spp near Michigan City (Bunnell, 2007).  
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	Q - Colonization of Cargo Residue in the Great Lakes by Zebra Mussel (Dreissena polymorpha) and Quagga Mussel (Dreissena bugensis)




